

SPECIFICATION

**SAMWHA CAPACITOR CO.,LTD
PT SAMCON**

JL. RAYA SUBANG CIKUMPAY
CAMPAKA-PURWAKARTA
JAWA BARAT - INDONESIA

SPECIFICATION

ITEM : DISC CERAMIC CAPACITOR
(Alternating Current : Y-Cap YB, YE, YF Series)
SMALLIZE

PT.SAMCON		
Written	Checked	Approved
Irman Sudirman	Apang Djafar S.	Kim Jae Min
TME		

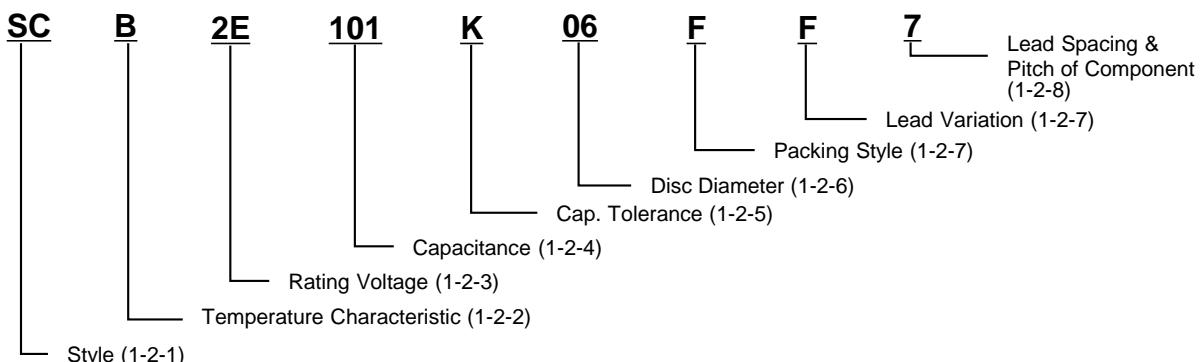
2025.10.16

SAMWHA CAPACITOR Co., Ltd
(Manufacturer : PT. SAMCON)

Record of Revision				SW-D02-04C
				2/13
P/N	SAMWHA SPEC	P/N	SAMWHA SPEC	
-	SCB2E101K06FF7	-	SDB2G101K06FF1	
-	SCB2E221K06FF7	-	SDB2G221K06FF1	
-	SCB2E331K07FF7	-	SDB2G331K07FF1	
-	SCB2E471K07FF7	-	SDB2G471K07FF1	
-	SCE2E102M06FF7	-	SDE2G102M07FF1	
-	SCE2E152M08FF7	-	SDE2G152M08FF1	
-	SCE2E222M08FF7	-	SDE2G222M10FF1	
-	SCE2E332M10FF7	-	SDE2G332M12FF1	
-	SCE2E472M12FF7	-	SDE2G472M13FF1	
No	Reason	Contents	Date of approval	Checked
1	RoHS Free	1) P.6/13 8. Solder Heat Resistance 2) P.9/13 16. The regulation of environmental pollution materials	05.11.10	
2	Material Change	Material wire from Cu wire (Sn-Cu) to Cp wire (Sn-Cu-Fe)	08.01.01	
3	Marking Code change	KTL Marking Code	09.10.01	
4	Add Soldering Profile	Flow Soldering & Iron Soldering	10.11.15	
5	Add Certification	CQC Certification Standard and Recognized No.	11.01.30	
6	Marking Code change	ENEC Code & Single Marking	11.10.29	
7	Drawing & Dimension of Taping Style	Hold Down Tape Width (Wo)	12.05.01	
8	Add Certification	UL 3 rd Edition Certification standard and Recognized No	12.09.10	
9.	Marking	Marking Change	21.01.26	

Reform 2011. Jul	STANDARD Ceramic Capacitor (A.C)	No	SW-D02-04C
		Page	3/13

Approval Standard and Recognized No.


Mark		Standard	Recognized No.	Type	R.V [V ac]	Temp. Char.	
UL		EN 60384-14 : 2005, 3 rd edition	E97754	SD	X1 250/440 Y1 250/300	B,E,F	
				SC	X1/Y2 250		
CSA		C2221 51	2476563 174670 (LR 60366)	SC	X1 300 Y2 300 or 250	B,E,F	
			2476564 174670 (LR 60366)	SD	X1 400 Y1 300 or 250		
ENEC	VDE	IEC 60384-14:2013/ AMD1:2016	40015805	SC	X1/Y2 250 or 300	B,E,F	
		IEC 60384-14:2013/ AMD1:2016	40015804	SD	X1 400 Y1 300	B,E	
	FIMKO	EN 60384-14 : 2013 + A1:2016	ENEC16/FI/22/010 28	SC	X1 300 Y2 250	B,E,F	
				SD	X1 400 Y1 250	B,E	
EK/KTL/KC		K60384-14	SU03004-16001 / SU03004-16003	SC	X1 300 Y2 250	B,E,F	
			SU03004-16002 / SU03004-16004	SD	X1 400 Y1 250	B,E	
CQC		GB/T6346.14-2015	CQC10001054594	SC	X1 300 Y2 250 or 300	B,E,F	
			CQC10001054593	SD	X1 400 Y1 250 or 300	B,E	

* ENEC/VDE : mark has replaced all the following European National marks
(VDE, Fimko, Demko, Nemko, Semko..etc)

1. SCOPE

This specification relates high dielectric constant disc type fixed A.C (Alternating current) ceramic capacitor, intended for use in equipment for telecommunication and electronic devices.

1-1. Type Designation

1-2. Specification

1-2-1. Style

High dielectric constant fixed alternating current ceramic capacitor.

SC : - Testing Voltage AC 2500V (for Lead Spacing 7.5mm & 10mm)

- Testing Voltage AC 2000V (for Lead Spacing 5.0mm)

SD : Testing Voltage AC 4000V

1-2-2. Temperature Characteristics

SAMWHA Symbol	Temp. Range	Change Rate
B (Y5P)	- 25°C ~ + 85°C	+ 10 % ~ - 10 %
E (Y5U)	- 25°C ~ + 85°C	+ 22 % ~ - 56 %
F (Y5V)	- 25°C ~ + 85°C	+ 22 % ~ - 82 %

* Operating temperature range guaranteed up to 125 degrees.

1-2-3. Rating Voltage

SC Type - 2E (250Vac)

SD Type - 2G (400Vac)

1-2-4. Capacitance

The nominal capacitance value in pF is expressed by three digit number.

The first two digits represent significant figures and the last digit is the number of zero to follow.

(More than 100pF), Ex. 2200pF - 222

Note : Pre-treatment : max operating temp $\pm 2^{\circ}\text{C}$ heating and maintain 1hr, and release $24 \pm 2\text{hr}$ at room condition, using LCR meter.

1-2-5. Cap. Tolerance.

Symbol	K	M	Z
Cap. Tol	$\pm 10\%$	$\pm 20\%$	$+ 80 \sim - 20\%$

1-2-6. Disc Diameter (only code)

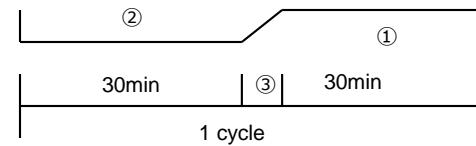
Code	06	07	08	09	10	11	12	13
Dia (Φ mm)	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5

1-2-7. Packing Style & Lead Variation

Packing Style		Lead Variation	
F	Taping Type Flat Pack	K	In-Forming Type
		F	Out-Forming Type
B	Bulk	S	Straight Long Type
		N	Straight Short Type
		K	Forming Long Type
		W (L)	Forming Short Type

1-2-8. Lead Spacing & Pitch of Component (see 10/13~12/13)

7 : F=7.5, P=15.0 (Bulk & Taping)


8 : F=7.5, P=30.0 (Taping) 1 : F=10.0, P=25.4 (Bulk & Taping)

9 : F=7.5, P=25.4 (Taping) 2 : F=10.0, P=30.0 (Taping)

1-3. Requirements and Method of Test and Environmental Substance

NO	ITEM		STANDARD																												
1.	Temperature Range		B, E, F : - 25°C to + 85°C Capacitance shall be within the specified tolerance when measured at 1 Vrms, 1 ± 0.1 KHz at 20°C																												
2.	Dissipation Factor (tan δ)		B : 2.5 % Max. at 1 KHz E : 2.5 % Max. at 1 KHz F : 5.0 % Max. at 1 KHz																												
3.	Insulation Resistance		More than 10000MΩ Applied voltage : 500V DC, charging time : 1 minute																												
4.	 Withstand Voltage (Hi-Pot Test)	Between Terminals	SC : 2500V AC for 1 ~ 5 Sec. (Charge & Discharge current 50mA max.) SD : 4000V AC for 1 ~ 5 Sec. (Charge & Discharge current 50mA max.) No abnormality is recognized																												
		Between Terminal & envelope	The smaller voltage of the rated voltage x 250% or 1.3 KV AC was applied for 1 to 5 sec. No abnormality recognized																												
5.	Temperature Characteristics		<table border="1" data-bbox="554 1383 1360 1570"> <thead> <tr> <th>step Char.</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>+ 20</td> <td>- 25</td> <td>+ 20</td> <td>+ 85</td> <td>+ 20</td> </tr> <tr> <td>E</td> <td>+ 20</td> <td>- 25</td> <td>+ 20</td> <td>+ 85</td> <td>+ 20</td> </tr> <tr> <td>F</td> <td>+ 20</td> <td>- 25</td> <td>+ 20</td> <td>+ 85</td> <td>+ 20</td> </tr> </tbody> </table> Capacitance is measured under the above temperature conditions. Capacitance change rate from the 1st to the 5th is calculated. Standardizing capacitance of the 3 rd step.					step Char.	1	2	3	4	5	B	+ 20	- 25	+ 20	+ 85	+ 20	E	+ 20	- 25	+ 20	+ 85	+ 20	F	+ 20	- 25	+ 20	+ 85	+ 20
step Char.	1	2	3	4	5																										
B	+ 20	- 25	+ 20	+ 85	+ 20																										
E	+ 20	- 25	+ 20	+ 85	+ 20																										
F	+ 20	- 25	+ 20	+ 85	+ 20																										
			Spec : <table border="1" data-bbox="684 1695 1288 1903"> <thead> <tr> <th>Char.</th> <th>Change Rate</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>+ 10 % ~ - 10 %</td> </tr> <tr> <td>E</td> <td>+ 22 % ~ - 56 %</td> </tr> <tr> <td>F</td> <td>+ 22 % ~ - 82 %</td> </tr> </tbody> </table>					Char.	Change Rate	B	+ 10 % ~ - 10 %	E	+ 22 % ~ - 56 %	F	+ 22 % ~ - 82 %																
Char.	Change Rate																														
B	+ 10 % ~ - 10 %																														
E	+ 22 % ~ - 56 %																														
F	+ 22 % ~ - 82 %																														

NO	ITEM	STANDARD																				
6.	Humidity Resistance Test	<p>Capacitor shall be subjected to $40 \pm 2^\circ\text{C}$ relative humidity of 90 to 95% for 500 ± 12 hours.</p> <p>After placing in room condition for 12 to 24 hours after this test shall satisfy table I</p> <p>Table I .</p> <table border="1"> <tr> <td>Appearance</td> <td>No remarkable damage</td> </tr> <tr> <td>Cap. Change</td> <td>B : $\pm 10\%$ Max E : $\pm 20\%$ Max F : $\pm 30\%$ Max</td> </tr> <tr> <td>Dissipation Factor ($\tan \delta$)</td> <td>B : $\pm 5\%$ Max E : $\pm 5\%$ Max F : $\pm 7.5\%$ Max</td> </tr> <tr> <td>Insulation Resistance</td> <td>5000MΩ Min</td> </tr> </table> <p>Pre-treatment : Capacitor should be stored at $125 \pm 2^\circ\text{C}$ for 1 hr., then placed at room condition for 24 ± 2 hrs. Before initial measurement.</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 hrs. at room condition .</p>	Appearance	No remarkable damage	Cap. Change	B : $\pm 10\%$ Max E : $\pm 20\%$ Max F : $\pm 30\%$ Max	Dissipation Factor ($\tan \delta$)	B : $\pm 5\%$ Max E : $\pm 5\%$ Max F : $\pm 7.5\%$ Max	Insulation Resistance	5000M Ω Min												
Appearance	No remarkable damage																					
Cap. Change	B : $\pm 10\%$ Max E : $\pm 20\%$ Max F : $\pm 30\%$ Max																					
Dissipation Factor ($\tan \delta$)	B : $\pm 5\%$ Max E : $\pm 5\%$ Max F : $\pm 7.5\%$ Max																					
Insulation Resistance	5000M Ω Min																					
7.	Humidity Resistance Load Test	<p>Temperature : $40 \pm 2^\circ\text{C}$</p> <p>Humidity : 90 ~ 95%</p> <p>Applied Voltage : Rating Voltage</p> <p>Testing time : 500 ± 12 hrs.</p> <p>Rated value is the same table I</p> <p>Pre-treatment : Capacitor should be stored at $125 \pm 2^\circ\text{C}$ for 1 hr., then placed at room condition for 24 ± 2 hrs. Before initial measurement.</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 hrs. at room condition.</p>																				
8.	Solder Heat Resistance	<p>Solder temp. : $260 -0, + 5^\circ\text{C}$</p> <p>Immersion time : 10 ± 0.5 sec</p> <p>No remarkable abnormality is recognized.</p> <p>Rated value is the same table I .</p> <p>Pre-treatment : Capacitor should be stored at $125 \pm 2^\circ\text{C}$ for 1 hr., then placed at room condition for 24 ± 2 hrs. Before initial measurement.</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 hrs. at room condition.</p>																				
9.	Soldering Profile Flow Soldering	<table border="1"> <thead> <tr> <th>Item Temp.($^\circ\text{C}$)</th> <th>Pre-heating</th> <th>Soldering</th> <th>Cooling</th> </tr> </thead> <tbody> <tr> <td>260</td> <td></td> <td style="text-align: center;">$260 +0, -5$</td> <td></td> </tr> <tr> <td>200</td> <td></td> <td></td> <td></td> </tr> <tr> <td>160</td> <td></td> <td></td> <td></td> </tr> <tr> <td>100</td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>When soldering this product to a Pcb / Pwb, do not exceed the solder heat resistance specification of capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.</p>	Item Temp.($^\circ\text{C}$)	Pre-heating	Soldering	Cooling	260		$260 +0, -5$		200				160				100			
Item Temp.($^\circ\text{C}$)	Pre-heating	Soldering	Cooling																			
260		$260 +0, -5$																				
200																						
160																						
100																						

NO	ITEM		STANDARD																	
	Soldering Profile	Iron Soldering	<p>When soldering capacitor with a soldering capacitor iron, it should be performed in following conditions.</p> <p>Temperature of iron-tip : 400°C max.</p> <p>Soldering iron wattage : 50W max.</p> <p>Soldering time : 3.5 sec. max.</p> <p>Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used</p>																	
10.	Solderability		<p>After immersing in a $260 \pm 5^\circ\text{C}$ lead bath for 10 seconds, leave it at room temperature for 1 hour</p> <p>[Depth of deposition: 1.5~2.0mm from the body]</p> <p>After test the lead wire shall be soldered with uniformly coated on the axial direction over 75% of the circumferential direction.</p>																	
11.	High Temperature Load Test		Appearance	No. visible damage	<p>Capacitors are to be placed in a circulating air oven for 1500 +48,-0 hours the air oven is to be maintained at a temperature of $85 \pm 3^\circ\text{C}$ throughout the test, each capacitor is to be subjected to a 800Vrms (AC) for SD (X1Y1) and 500Vrms (AC) for SC (X1Y2) with frequency of 50 - 60Hz.</p> <p>Pre-treatment : Capacitor should be stored at $125 \pm 2^\circ\text{C}$ for 1 hr., then placed at room condition for 24 ± 2 hrs. Before initial measurement.</p> <p>Post-treatment : Capacitor should be stored for 1 to 2 hrs. at room condition.</p>															
12.			Cap. Change	B																
				E																
				F																
			Tan δ	B	<p>5% max</p> <p>5% max</p> <p>7.5% max</p>															
				E																
				F																
			I.R	5000MΩ min																
			Appearance	No. visible damage																
			Cap. Change	B																
				E																
				F																
			Tan δ	B	<p>5% max</p> <p>5% max</p> <p>7.5% max</p>															
				E																
				F																
			I.R	1000MΩ min																
<p>Temperature cycle should be measured in the following test.</p> <p>Cycle time : 5 cycle</p> <p>Pre-treatment : Capacitor should be stored at max operating temp(①). for 1hr., placing at room condition for 24 ± 2 hrs.</p> <p>Post treatment : Capacitor should be stored for 24 ± 2 hrs at room.</p> <p>※②:min. operating temperature</p> <p>③:2 to 5minutes</p>																				
<p>Table II : Temperature Cycle</p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> <th>Time (min)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>Min operating temp.</td> <td>30</td> </tr> <tr> <td>2</td> <td>Room temp.</td> <td>2 ~ 5</td> </tr> <tr> <td>3</td> <td>Max operating temp</td> <td>30</td> </tr> <tr> <td>4</td> <td>Room temp.</td> <td>2 ~ 5</td> </tr> </tbody> </table>						Step	Temperature (°C)	Time (min)	1	Min operating temp.	30	2	Room temp.	2 ~ 5	3	Max operating temp	30	4	Room temp.	2 ~ 5
Step	Temperature (°C)	Time (min)																		
1	Min operating temp.	30																		
2	Room temp.	2 ~ 5																		
3	Max operating temp	30																		
4	Room temp.	2 ~ 5																		

NO	ITEM	STANDARD												
13.	Discharge Test (Impulse Test)	<p>Capacitor shall withstand three times of discharges from a dump capacitor with an interval of 10 seconds between successive discharges. Test condition based on below table :</p> <table border="1"> <tr> <td>Type</td> <td>voltage</td> </tr> <tr> <td>SD</td> <td>8 kVdc</td> </tr> <tr> <td>SC</td> <td>5 kVdc</td> </tr> </table>					Type	voltage	SD	8 kVdc	SC	5 kVdc		
Type	voltage													
SD	8 kVdc													
SC	5 kVdc													
Item	Type	Initial	After	Measurement condition										
Appearance	No remarkable damage			Visual										
Cap	B	$\pm 10\%$ (K)	$\pm 10\%$	1 Vrms, 1 ± 0.1 kHz at 20°C										
	E	$\pm 20\%$ (M)	$\pm 20\%$											
	F	$\pm 20\%$; (M) -20% ~+80% (Z)	$\pm 30\%$											
Tan δ	B	2.5 max	5.0 max											
	E	2.5 max	5.0 max											
	F	5.0 max	7.5 max											
I.R	Min 10000M Ω		Min 1000M Ω	Voltage : 500 Vdc Charging time : 60 sec										
<p>Front time (T_1) = $1.2\mu\text{s} = 1.67T$ Time to half-value (T_2) = $50\mu\text{s}$</p>			<p>C_1 = charging (or tank) capacitor C_p = parallel capacitor R_p = parallel resistor, or charging resistor C_x = capacitor under test R_s = series resistor, or charging resistor U_0 = direct voltage source R_L = loading resistor</p>											
<table border="1"> <thead> <tr> <th>Nominal value of C_x mF</th> <th>C_T $\pm 10\%$ mF</th> <th>R_p $\pm 10\%$ Ω</th> <th>R_s $\pm 10\%$ Ω</th> <th>C_p $\pm 10\%$ pF</th> </tr> </thead> <tbody> <tr> <td>$C_x \leq 0,003\ 9$ $0,003\ 9 < C_x \leq 0,012$</td> <td>0,25 0,25</td> <td>234 234</td> <td>62 45</td> <td>7 800 7 800</td> </tr> </tbody> </table>			Nominal value of C_x mF	C_T $\pm 10\%$ mF	R_p $\pm 10\%$ Ω	R_s $\pm 10\%$ Ω	C_p $\pm 10\%$ pF	$C_x \leq 0,003\ 9$ $0,003\ 9 < C_x \leq 0,012$	0,25 0,25	234 234	62 45	7 800 7 800		
Nominal value of C_x mF	C_T $\pm 10\%$ mF	R_p $\pm 10\%$ Ω	R_s $\pm 10\%$ Ω	C_p $\pm 10\%$ pF										
$C_x \leq 0,003\ 9$ $0,003\ 9 < C_x \leq 0,012$	0,25 0,25	234 234	62 45	7 800 7 800										
14.	Flaming Test	<p>The flame shall be applied for 15 Seconds, and than removed for 15 seconds until 5 such applications have been made.</p> <p>The material to fourth cycle and more than 1 minute in last cycle.</p>												
		<p>Flame nozzle : $\varnothing 9.5$ mm, Dimensions in mm</p>												

NO	ITEM	STANDARD	
15.	Vibration Test.	<p>The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6hrs., 2hrs. Each in mutually perpendicular directions.</p> <p>After test, capacitor shall satisfy table I.</p>	
16.	Preservation (keeping)	When solderability is considered, capacitors are recommended to be used in 12 months	1. Temperature : 30°C ± 10°C 2. Relative Humidity : 55% ± 25
17.	The Regulation of Environmental Pollution Materials.	<p>* Never use materials mentioned below based on International RoHS Standard.</p> <p>* Pb, Cd, Hg, Cr⁺⁶, PBB, PBDE, Phthalate (DEHP, DBP, BBP & DIBP)</p>	

MARKING

Marking Table (Cap 1000pF ↑)

- ① Type designation : SC or SD
- ② Nominal capacitance: 3 digit system
- ③ Capacitance tolerance : letter code
- ④ Manufacture's name : SWC
- ⑤ Recognized mark
- ⑥ X, Y Class and Rating voltage
- ⑦ Month of manufacture
- A,M:Jan. B,N:Feb. C,O:Mar.
- D,P:Apr. E,Q:May F,R:Jun.
- G,S:Jul. H,T:Aug. I,U:Sep.
- J,V:Oct. K,W:Nov. L,X:Dec.

From A to L are Even year,

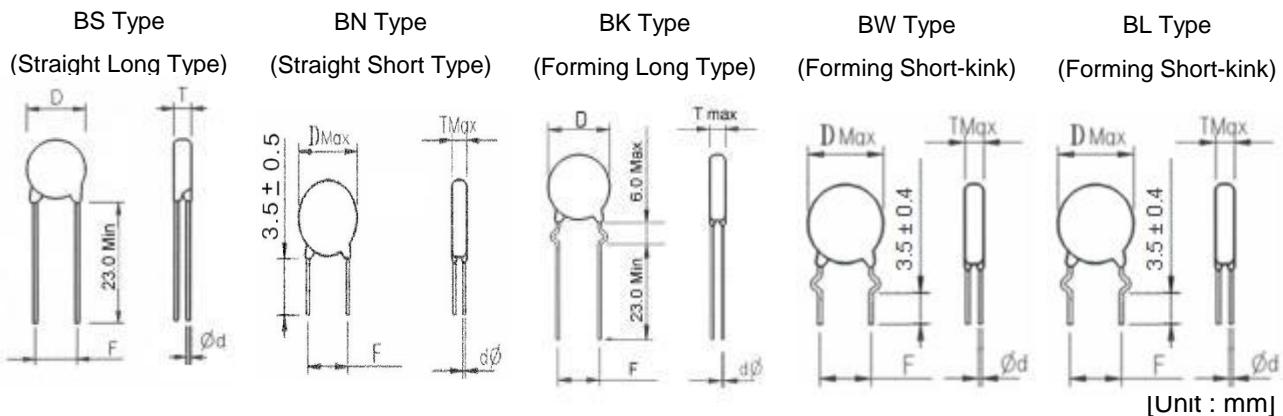
from M to X are odd year

- ⑧ Dot Marking are week of month

example :

- Week 1
- • Week 2
- • • Week 3
- • • • Week 4

SC TYPE	SD TYPE
FRONT	FRONT

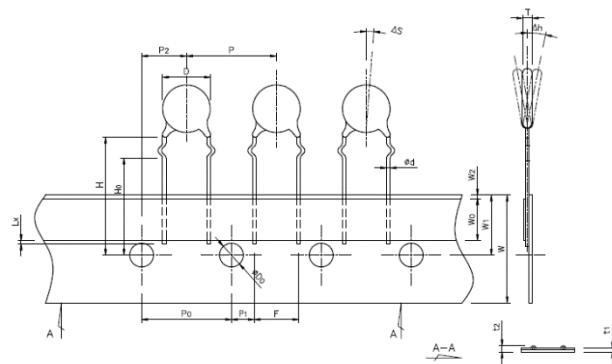

Marking Table (Cap 680pF ↓)

- 1) Type designation : SC or SD
- 2) Nominal capacitance: 3 digit
- 3) Capacitance tolerance : letter code
- 4) Manufacture's name : SWC
- 5) X,Y Class

SC TYPE	SD TYPE
FRONT	FRONT

2. STYLE AND DIMENSIONS

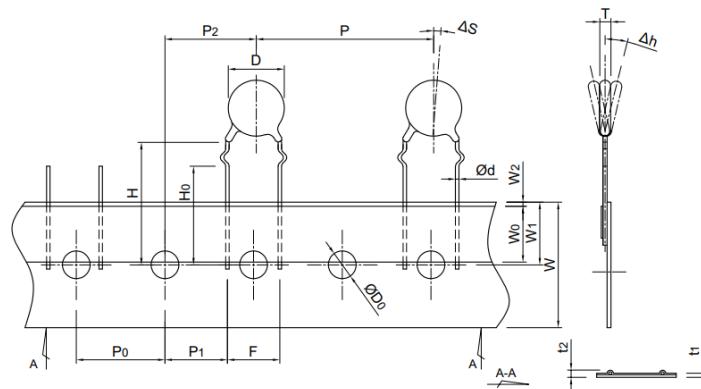
2-1. Bulk



[Unit : mm]

TYPE	TEMP CHAR.	CAPACITANCE (pF)	DIMENSIONS			
			D max	T max	F ± 1.0	d(φ) ± 0.05
SC	B	100, 220	6.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
		330, 470	7.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
		680	8.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
	E	1000	6.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
		1500, 2200	8.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
		3300	10.5	6.0	5.0, 7.5, 10.0	0.50 / 0.60
		4700	12.5	6.0	7.5, 10.0	0.60
	F	4700	8.5	6.0	7.5, 10.0	0.60
		10000	14.5	6.0	7.5, 10.0	0.60
SD	B	100, 220	6.5	6.0	10.0	0.60
		330, 470	7.5	7.0	10.0	0.60
	E	680, 1000	7.5	7.0	10.0	0.60
		1500	8.5	7.0	10.0	0.60
		2200	10.5	7.0	10.0	0.60
		3300	12.5	7.0	10.0	0.60
		4700	13.5	7.0	10.0	0.60

2-2. Taping


FF7

[Unit : mm]

ITEM	SYMBOL	TAPING SPECIFICATION	NOTE
		FF7	
Body Diameter	D	14.5 Max	
Body Thickness	T	6.0 Max	
Lead Diameter	Φd	0.60 ± 0.05	
Pitch of Sprocket Hole	P ₀	15.0 ± 0.3	
Pitch of Component	P	15.0 ± 1.0	
Lead Length from Hole Center to Lead	P ₁	3.75 ± 1.0	
Lead Length from Hole Center to Component Center	P ₂	7.5 ± 1.5	
Lead Spacing	F	7.5 ± 1.0	
Deviation Along Tape.Left or Right	△S	0 ± 1.0	
Deviation Across Tape	△h	0 ± 2.0	
Carrier Tape Width	W	18.0 + 1.0 - 0.5	
Hold Down Tape Width/Masking Tape Width	W ₀	8.0 Min	
Position of Sprocket Hole	W ₁	9.0 ± 0.5	
Hold Down Tape Position	W ₂	3.0 Max	
Lead-Wire Clinch Height	Ho	16.0 ± 0.5	
Height of Component Hole	H	20.0 + 1.5 - 1.0	
Diameter of Sprocket Hole	ΦD ₀	4.0 ± 0.2	
Total Tape Thickness	t ₁	0.7 ± 0.2	
Total Thickness, Tape and Lead Wire	t ₂	1.7 Max	
Lead Wire Protrusion	Lx	1.0 Max	

FF1

[Unit : mm]

ITEM	SYMBOL	TAPING SPECIFICATION		NOTE
		FF1		
Body Diameter	D	13.5 Max		
Body Thickness	T	7.0 Max		
Lead Diameter	$d\Phi$	0.60 ± 0.05		
Pitch of Sprocket Hole	P_0	12.7 ± 0.3		
Pitch of Component	P	25.4 ± 1.0		
Lead Length from Hole Center to Lead	P1	7.7 ± 1.0		
Lead Length from Hole Center to Component Center	P2	12.7 ± 1.5		
Lead Spacing	F	10.0 ± 1.0		
Deviation Along Tape, Left or Right	ΔS	0 ± 1.0		
Deviation Across Tape	Δh	0 ± 2.0		
Carrier Tape Width	W	18.0 ± 1.0 - 0.5		
Hold Down Tape Width/Masking Tape Width	W ₀	8.0 Min		
Position of Sprocket Hole	W ₁	9.0 ± 0.5		
Hold Down Tape Position	W ₂	3.0 Max		
Lead-Wire Clinch Height	Ho	16.0 ± 0.5		
Height of Component from Hole Center	H	20.0 ± 1.5 - 1.0		
Diameter of Sprocket Hole	ΦD_0	4.0 ± 0.2		
Total Tape Thickness	t_1	0.7 ± 0.2		
Total Thickness, Tape and Lead Wire	t_2	1.7 Max		
Lead Wire Protrusion	Lx	1.0 Max		

□ PACKING SPECIFICATION

1) BULK

TYPE		PACKING QUANTITY [pcs]				
DIVISION	L/W DIVISION [mm]	DIAMETER [Φ]	INNER BOX		OUT BOX	
			VINYL PAPER BAG		IBB 140	OBB 150
3 ~ 8 KV (Y-CAP)	Long	~ 7	500 +2, -0	5,000	-	20,000
		8 ~ 11		4,000	-	16,000
		12 ~ 14		3,000	6,000	-
		15 ~ 16		2,500	5,000	-
		17 ~ 20	200 +1, -0	2,000	4,000	-
	Short	~ 9	500 +2, -0	10,000	20,000	-
		10 ~ 11	500 +2, -0	7,500	15,000	-
		12 ~ 14	500 +2, -0	5,000	10,000	-
		15 ~ 16	500 +2, -0	4,000	8,000	-
		17 ~ 20	200 +1, -0	2,000	4,000	-

- ETC : SCE222M10, 332M12, F472M10(12) BK7 = 400 +1, -0
- ETC : SCE2E222M10FF7, SCE2E472M14 FF8 = 1,000 +1, -0 (IN), 5,000(OUT)

2) TAPING

DIVISION	F [mm]	TYPE	PITCH	DIAMETER [Φ]	VOLTAGE [V]	BOX H [mm]	PACKING QUANTITY [pcs]			
							IBR	OBR		
3 KV~	5.0	FF5	12.7	ALL	SC, SD	52	1,000 +5, -0	5,000		
	7.5	FF7	15.0	14.0↓			1,000 +5, -0	5,000		
		FF8	30.0	15.0↑			600 +5, -0	3,000		
		FF9	25.4	ALL			600 +5, -0	3,000		
	10.0	FF1	25.4	ALL			600 +5, -0	3,000		
		FS1	25.4				600 +5, -0	3,000		
		FF2	30.0				500 +5, -0	2,000		

3) PACKING BOX DIMENSIONS

PACKING STYLE		CATEGORY		L × W × H [mm]
BULK	IBB (Inner Box Bulk)	IBB 140		250 × 235 × 130
	OBB (Out Box Bulk)	OBB 150 (IBB 140 × 2)		485 × 265 × 145
TAPING	INNER BOX	IBR 52		325 × 280 × 55
	OUT BOX	OBR 52 (IBR 52 × 5)		340 × 310 × 290

4) STACKING BOX (Maximum)

PACKING STYLE	INBOX	OUTBOX
BULK	6	6
TAPING	10	6

□ MATERIAL LIST

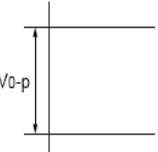
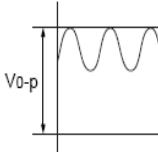
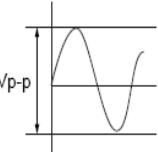
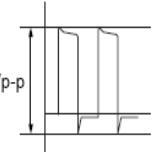
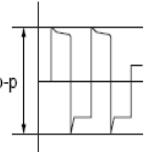
NO	Material Name	Substance	Hazardous Substance Existences						Remarks
			Pb	Hg	Cr	Cr ⁶	PBB	PBDE	
1	Dielectric Powder	BaTiO ₃	X	X	X	X	X	X	
2	Ag Paste	Ag	X	X	X	X	X	X	
3	Solder	Sn, Ag, Cu	X	X	X	X	X	X	
4	Epoxy Resin	Epoxy	X	X	X	X	X	X	
5	Lead Wire	Cu, Sn, Fe	X	X	X	X	X	X	Plating thickness : Min 3 μm. (material : tin)

Label Type

Bulk Style

BULK TYPE		
PLASTIC	INBOX	OUTBOX

Taping Style






TAPING TYPE		
PLASTIC	INBOX	OUTBOX

■ Notices:

► Caution

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the V_{P-P} value of the applied voltage or the V_{0-P} that contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rate voltage containing these irregular resonance.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement					

2. Operating Temperature And Self-Generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or the like, it may have self-generated heat due to dielectric loss. Applied voltage should be the load such as self-generated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1\text{mm}$ and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

► Notice (Capacitance change of capacitors)

For some of the capacitors, capacitance value may change considerably in the temperature range, or by applied DC voltage. and capacitor has aging characteristics (capacitance decreases by keeping as it is)